幻运算和内存(1 / 2)

=高性能计算=

算法有两种实现方式,一种是纯串联算法,一种是纯并联算法。

纯串联算法,就是整个算法具备先后顺序性,前面得出的结果,是后面运算的参与因子,比如(499979开499973次方)乘以499979的结果再乘以499927分之499943,前面的运算没有得出结果时,后面的运算就只能做预处理(把非纯串联的算式运算出来,比如在计算499979开499973次方的同时,也可以计算499927分之499943)。

纯并联算法,就是整个算法并不具备先后顺序性,比如阶乘,升阶次方,降阶次方……,算法本身可以拆分成很多个小算法,然后使用多个运算单元进行运算。

高性能计算,就是尽可能避免使用串联式算法,而尽可能使用并联式算法,这样才能避免因为算法的原生属性,导致硬件资源的浪费和运算速度的限制,当然这只能说是软解决,治标,本质性还是需要研发出单核心更高的运算频率,这才是硬解决,不怕串联算法,治本。

=特殊运算猜想=

按照运算和内存的硬件需求,可以分为以下四种:

1:运算要求高,内存需求大(比如理论核试验,生物基因运算,非单一人工智能的大数据处理→也就是说不存在一种人工智能通用于大数据,各个行业的专家设计属于自己行业专属的专用人工智能)。

2:运算要求高,内存需求小(比如人工智能决策,最终决策是搁置,确认可以,确认不可以,确认要禁止,确认可以无作为→静观其变,最终结果不要求有怎样大的内存,只是运算过程???大量的算法参与其中)。